from collections import deque
def tarjan(g):
"""
Tarjan's algo for finding strongly connected components in a directed graph
Uses two main attributes of each node to track reachability, the index of that node
within a component(index), and the lowest index reachable from that node(lowlink).
We then perform a dfs of the each component making sure to update these parameters
for each node and saving the nodes we visit on the way.
If ever we find that the lowest reachable node from a current node is equal to the
index of the current node then it must be the root of a strongly connected
component and so we save it and it's equireachable vertices as a strongly
connected component.
Complexity: strong_connect() is called at most once for each node and has a
complexity of O(|E|) as it is DFS.
Therefore this has complexity O(|V| + |E|) for a graph G = (V, E)
"""
n = len(g)
stack = deque()
on_stack = [False for _ in range(n)]
index_of = [-1 for _ in range(n)]
lowlink_of = index_of[:]
def strong_connect(v, index, components):
index_of[v] = index
lowlink_of[v] = index
index += 1
stack.append(v)
on_stack[v] = True
for w in g[v]:
if index_of[w] == -1:
index = strong_connect(w, index, components)
lowlink_of[v] = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
lowlink_of[v] = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
component = []
w = stack.pop()
on_stack[w] = False
component.append(w)
while w != v:
w = stack.pop()
on_stack[w] = False
component.append(w)
components.append(component)
return index
components = []
for v in range(n):
if index_of[v] == -1:
strong_connect(v, 0, components)
return components
def create_graph(n, edges):
g = [[] for _ in range(n)]
for u, v in edges:
g[u].append(v)
return g
if __name__ == "__main__":
n_vertices = 7
source = [0, 0, 1, 2, 3, 3, 4, 4, 6]
target = [1, 3, 2, 0, 1, 4, 5, 6, 5]
edges = list(zip(source, target))
g = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)